[E&GROUP —eurostep-

THROUGH LIFE SUPPORT STANDARD
Guidance on writing DEXIib TLSS Templates
LSC REFERENCE: ECSMODTLSS5025.120

ESL REFERENCE: ESUKPC09.000157

Authors Checked Approved
Brad Harris - Eurostep Rob Bodington - Eurostep Simon Dick - Eurostep
Mike Ward - Eurostep Tim Turner - LSC Group Paul Clark - LSC Group
Issue Date Client

TLSD Policy Coordination -

1.0 01 November 2007 TLSS Project Manager
LSC Group Ltd. Eurostep Limited,
Lincoln House Cwittir Lane,
Fradley Park St. Asaph,
Lichfield Denbighshire,
Staffordshire LL17 OLQ,
WS13 8RZ United Kingdom
United Kingdom

[EEGROUP

Amendment Record

—eurostep-

Issue Date Summary of changes
1.0 2007-11-01 First Issue, delivered by TLSS Work Package 1, Sub-
task 1
Distribution
This document has been distributed to:
Copy Media Location Title
No
1 PDF File TLSS Project Manager

[E&GROUP —eurostep-

TABLE OF CONTENTS

1 INTRODUCTION ...ccoiieiiicinennsninsnnessssnsssssessasssssassssssses 4
2 KNOWLEDGE, SKILLS AND TOOLS REQUIRED.........ciiiinreinsneinsneecssneccsseensneesnn 4
3 GUIDANCE NOTES ON CREATION OF A TLSS BUSINESS TEMPLATEcc.... 5
3.1 ADD YOUR CONTACT DETALLSociiiiiiiiiiiiiiii ittt s 5
3.2 CREATE THE BUSINESS TEMPLATEccccuiiiiiiiiiiiiiiiiiiiii it 6
3.3 EDITTHEINDEX FILE.....ciiiiiiiiiiiiiiiiiiiiiiiie i s s 8
3.4 EDIT THE TEMPLATE FILES.......ciiiiiiiiiiiiiiii it s 8
3.4.1 Header @lements.ouiuuiii i 8
3.4.2 COMEQCES ...ttt ettt e e e e 9
3.4.3 DESCTIPIION ...t 9
3.4.4 BUSTNESS PEFSPECIIVE ...ttt 10
3.4.5 Business object definition (Information requirement)ccccceeeeeceeeenncnnenn. 10
3.4.6 Information model diagram...................ccccoooieiiiiiiiiiiiiie e 13
3.4.7 INPUE PAVAMEIETS ..ottt 15
3.4.8 ReEference PAramMeters.cc...coeeuuiiiiiiiiiiecii et 18
3.4.9 Model diagram example................ccccoooeviiiiiiiiiiiiiiiiieecie e 18
3.4.10 INSIANETQTION DAL ...ttt 20
3411 Template example...............cccccooevuiiiiiiiiiiiiiiie et 20
3412 URIQUE FULES.........c.eeeieee et 21
3.4.13 INSIANCE AIAQVAMS ...ttt e e e e 21
3414 CRAVACIETIZATIONS ..o oot et ettt et e e e e 31

4 TESTING THE TEMPLATE DOCUMENTATION.....ccccceevvirnrnnricsnnecssanssssnncsneesssssessanees 33
4.1 TEST THE DEX FILES ON THE LOCAL MACHINE........uiittiiieeeeiiiieeeeirieeeeeeeiieeeerrrieeesesrineaeees 33
4.2 UPLOAD THE DEX FILES TO SOURCEFORGEcccuiiiiiiiiiiiiiiiiiiiiiie e 34
43 TEST THE DEX FILES ON THE “PLCS_RESOURCES” WEB SITE......ceetiitutieiriiiieeeeiieeeeaieeeaenns 35

5 APPROVAL OF TLSS BUSINESS TEMPLATES.......ccccovviiiiiviiinnrnniicnsnenicssnenicssnseneas 37
6 MAINTENANCE OF TLSS BUSINESS TEMPLATES........ccocccvcnviinnnrinsninssneccseccssancenes 38
7 REFERENCEScoiiiintintiintennnnennneiniiinnsecnsiessssisssisssssssssssssssssessssssssssssssasssssasssss 39

[E&GROUP —eurostep-

1 INTRODUCTION

1.

2.

7.

In accordance with the TLSS DEX Development Methodology document [1], a TLSS
Business Template1 shall be created for each TLSS Business Objectz.

It is assumed that the business object, for which the template is being created, has already
been fully defined and reviewed according to [2].

. Usually the TLSS requirement described by a business object will straightforwardly result in

a single template.

When there is optionality (i.e. optional or zero cardinality or selects or subtypes) in a TLSS
business object this will often be dealt with by using characterization or classification in the
resulting business template. Sometimes, however, the only way to deal with optionality in a
business object will be to create more than one template — one template for each option
which the TLSS community may wish to instantiate. In such cases, the relevant business
object UML diagram should be produced in different edited versions that reflect the
different options (see, for example, the contrasting UML diagrams in business templates:
“actual part” and “batch”).

. Asstated in [1], if it is possible to define a generic PLCS template that fully meets the

requirements of the business object, then this is the preferred option, rather than making the
template specific to TLSS. Even if this is not the case, it may be possible to define a generic
PLCS template that satisfies a large proportion of the TLSS requirement, and then to define
an additional TLSS business template that specializes it — perhaps with additional
characterizations and / or reference data. In this way, maximum re-use can be made of both
PLCS and TLSS work.

Guidance on writing PLCS Capability based templates can be seen at http://www.plcs-
resources.org/plcs/dexlib/help/dex/dvlp _cap.htm. This includes a description of the contents
of templates.

It is assumed that the accounts and software listed below are activated and set up / installed.

2 KNOWLEDGE, SKILLS AND TOOLS REQUIRED

1.

The process requires a thorough understanding of:

e The TLSS process model and the information flow classes that it defines.

e UML information modelling methods and practices.

e The TLSS business object model.

e The existing TLSS business templates.’

The existing PLCS templates.

The PLCS data model.

e The template instantiation path language.

e Xml and how files are controlled by DTD’s.

The following accounts and software are required:

e DEXLib developer account on Sourceforge. See DEXIib help file http://www.plcs-
resources.org/ples/dexlib/help/dex/dvlp_intro.htm.

e (VS and associated encryption software (Putty, Plink, Puttygen, Pageant) — for
downloading and uploading files to Sourceforge. See DEXIib help file http://www.plcs-
resources.org/plcs/dexlib/help/dex/dexlib_cvs_access.htm

! Here after referred to as “the template”

? Here after referred to as “the business object”

3 Note that the existing templates need to be updated iaw the new business template structure.

4

[E&GROUP —eurostep-

e DEXIib — including utilities for creating the DEX and its constituent files. See DEXIib
help file http://www.ples-resources.org/ples/dexlib/help/dex/dexlib_cvs access.htm.
Note that this tool needs two parameters setting (Using Options->Set DEXLib
properties). These are the path to the DEXLib root (such as “C:\Sourceforge\dexlib™)
and the path to the eep executable (such as C:\Sourceforge\dexlib\utils\dex).

e Xml editor such as Oxygen (http://www.oxygenxml.com/) or XMLSpy
(http://www.altova.com/products/xmlspy/xml_editor.html) — for editing the
template.xml file. The uploading of invalid xml to the DEXIlib Sourceforge site can
cause significant maintenance problems.

e MSVisio — if Graphical Express and the DEX Template plug-in are used.

e Graphical Express and the associated DEX Template — for creating template model
diagrams (see http://www.plcs-resources.org/ples/dexlib/help/dex/sw_graphexp.htm) -
or drawing software that can produce similar results.

e Graphical Instance — for creating template instance diagrams (see http://www.plcs-
resources.org/plcs/dexlib/help/dex/sw_graphinst.htm) — or drawing software that can
produce similar results.

NOTE: The examples used in the following sections are all derived
from the TLSS business template “actual part”.

3 GUIDANCE NOTES ON CREATION OF A TLSS BUSINESS
TEMPLATE

3.1 Add your contact details

1. Add your details to the contacts file: ‘“\dexlib\data\basic\dex\contacts.xml” if they have not
yet been added.”

2. The entry for the information model diagram in the contacts.xml file should follow the
example below:

<contact "bradharris">
<firstname>Brad</firsthame>
<lastname>Harris</lastname>
<affiliation>PLCS Inc / Eurostep Limited</affiliation>
<street>Cwittir Lane</street>
<city>St Asaph</city>
<state>Denbighshire</state>
<postcode>LL17 0LQ</postcode>
<country>UK</country>
<phone> +44 7798 674520</phone>
<email>brad. harris@eurostep.com</email>
</contact>

3. Upload this file to Sourceforge:
a. Add your access key using the Pageant utility.

* Note: the “\” character is used for the folder separator in path names defined in this document — on the assumption that
Windows will be the Operating System used by DEXLib developers.

5

[E&GROUP —eurostep-

b. Run wincvs.

In the left hand upper window, navigate to “\dexlib\data\basic\dex\”.

d. The “contacts.xml” file should be marked with a red page at the left hand side of its
name in the right hand upper window.

e. Right click on the file name and select “Commit” from the drop down menu.

Enter a log message in the window that appears and then hit the “OK” button.

g. When the Commit is complete, the red page at the left hand side of the file name
should change back to white and the Rev number (second property column) should
increment.

o

=

3.2 Create the Business Template

1. To create a TLSS Business Template run the DEXIib Tool and go to Tools>Create Business
template:

Figure 1 Screen shot of the DEXLib Tool User Interface for Creation of a TLSS Business Template

2. The Business Context drop down box shall be edited to select “TLSS”.

3. The Template name field shall be edited with the identification of the Template. This shall
be the same as the name given to the business object for which it is being defined. This
identification string is used as the DEXLib folder name, under which all the template files
will be stored, as well as the name element within the main template file — “template.xml”.
Note that the name given to all template files that will be uploaded to Sourceforge shall be
in a lower_case underscore separated style. NO CAPITALS and no white space are
allowed in any cvs file names.

[E& GROUP —eurostep-

4. The Template short name field shall be edited with a short name — act_part — in this case.
These short names may be necessary when the template is used on diagrams of other
templates — if there are graphical layout restrictions — but in general they shall not be used
further by other TLSS templates and DEXSs.

The template name and short_name shall be unique within the TLSS business_context.

6. On completion of the three fields and hitting the “OK” button, the following message

93]

T T e T e
Leardsd! D Smourssforgatdecll b deta’ burcarda poi OGN csaplat s canpl oo _Lncss. mml

smplacs_index: sl
INTE L . Wl

jarh & Frmornoeirt S FHYS o e ol

Saurceiargs bdeel L detal brecarrca pi LEME, bares s, Ful

o g ' d B L 216, AT A RS EEE T S T TEE dimplars indea: sl
Al al hppmrnoapk L FHY Ean
il dhirt ' o seneso S RLFL s :

& ik i PO, LT X ST $54T - il

st &1 buprrocept VAL T b ampl pta | banpil sty _ Lk
A ph LT E Tamplat sa L cemplaty

Figure 2 Screen shot of the DEXLib Tool User Interface on Completion of Creation of a TLSS Business
Template

This confirms that the template file structure has been created (under
“dexlib\data\busconcept\TLSS\templates” with folder name “actual part” — in this case).
7. The DEXLib Tool will also create three subfolders under
“dexlib\data\busconcept\TLSS\templates\actual part”:
o “\dvlp™:
a. A skeleton file called “issues.xml” is generated by the script. This can be edited
to record issues against the template.
b. Source diagrams for information models shall be stored in here as well, typically
in graphic file formats produced by UML tools.
e “\images”:
a. Graphic files for inclusion in DEXIib shall be converted to png format and stored
in this directory.
o “\sys™:

[E&GROUP —eurostep-

a. The files that are generated in this folder are used by the DEXIlib and CVS
software packages for management purposes and shall not be edited manually.

NOTE: No alterations shall be made to the directory structure generated by the DEXLib
Tool and, apart from template.xml, none of the files that are created in
“dexlib\data\busconcept\TLSS\templates\actual part” shall be edited manually.

3.3 Edit the index file

1. The message above also prompts the user to update the appropriate index file by adding
the identification of the new template to it. The index file “template_index.xml” is located
in “dexlib\data\busconcept\TLSS\templates”. For each TLSS business template created, a
line has to be added to the <templates> element of this file. This element requires the
name (as entered above).

2. The entry for the information model diagram in the “template _index.xml” file should
follow the example below:

<template "actual part"/>

3. The lines within the <templates> element shall be ordered alphabetically by name, since
the sequential ordering of the elements within the <templates> element is used as the
display order of the TLSS templates within the browser view of DEXLib.

3.4 Edit the template files

1. The main file that needs to be edited by the developer is called “template.xml”. This
contains both “header” type elements as well as the descriptive, model and specification
elements, as described below.

2. In addition to these elements, the Reference Data that constitutes part of the detailed
technical specification of the template is referenced via the input parameter definitions and
the instantiation path — see sections [3.4.7] and [3.4.10]. The creation of TLSS Reference
Data is described in separate TLSS guidance documentation [3] and [4].

3. Note that if any part of the “template.xml” file is created by copying text from other
applications such as MS Word, care should be taken to remove certain characters such as
smart quotation marks. It is better to create text in a text editor. Other characters that require
care are the ampersand, less-than, and greater-than (& <>), which are characters that have a
special interpretation in xml. These may be escaped - if it is essential to use such characters
— as follows: & < >.

3.41 Header elements

1. The name, short _name, and business_context elements are populated by the DEXLib Tool
from the user input when the template is created.’

2. There are three elements (rcs.author, res.date and res.revision) at the head of the file that
are populated by the CVS software when the file is first checked into Sourceforge and
these shall not be manually edited.

3. The development.folder element is populated by the DEXLib Tool when the DEX is
created and shall not be manually edited.

4. The remainder of the file must be edited by the developer.

> Note: if there is a "" element in the file, this shall be ignored. Future releases of the DEXLib Tool
will not generate this element.

[E&GROUP —eurostep-

5. The next element is the status element and this requires state and completion date
attributes. The valid values for state are defined in the file “dexlib\dtd\dex\dexdoc.ent”.
The value “in_work” is suggested as the initial state for all TLSS DEXs. The
completion_date shall be taken from the TLSS project plan under which the DEX is being
developed.

6. The entry for status in the “template.xml” file should follow the example below:

<status "in_work" "2007-12-30">
<review "model" "mikeward" "not_started"
" /!/>
<review "business" "andy.burden" "not_started"
" /!/>
</status>

Note that the status element is an optional component of a “template.xml” file, but for
TLSS templates it shall be populated and updated according to the progress of the DEX.

3.4.2 Contacts

1. An editor contact must be provided for the template, in addition to those named in the
status element.
2. The entry for contacts in the “template.xml” file should follow the example below:

<contacts>
<editor "bradharris"/>
</contacts>

3. Additional reviewer contacts may also be added:

<contacts>
<editor "bradharris"/>
<reviewer "mikeward" "model"/>
<reviewer "andy.burden" "business"/>
</contacts>

Note that the names referenced must also be present within the
“dexlib\data\basic\dex\contacts.xml” file.

3.4.3 Description

1. The description element of the business template shall contain a brief overview of its
purpose and the information that is being mapped / represented in PLCS terms by the
template.

2. The entry for description in the “template.xml” file should follow the example below:

<description>
<p>
This template describes how to represent the TLSS concept of an actual part
in terms of PLCS model elements (templates, entities, and reference data).
</p>
</description>

[E&GROUP —eurostep-

3.4.4
1.

3.45

Business Perspective

The <business_perspective> element of the template shall describe the TLSS data exchange
specifications of which it is a part. A general description of typical exchanges, with
reference back to relevant TLSS DEX specifications, is sufficient to define the business
perspective.

This element is not generated by the DEXLib Tool since it is optional, but for all TLSS
business templates it shall be included manually by the user and completed as illustrated
below.

The entry for business perspective in the “template.xml” file should follow the example
below:

<business_perspective>

<p>
The ActualPart business object is used by those TLSS Data Exchange
Specifications that require information about
actual parts / realized parts / items of equipment / assets that are identified
by an individual serial number.

</p>

<p>
Usually, ActualPart business objects are originally created by the
manufacturer of the item and are an external input to TLSS processes.
Such business objects may be updated by TLSS processes if, for example,
UID markings are added in-service.

</p>

</business_perspective>

A business perspective element may contain many types of element allowed in DEXLib text
sections, including paragraphs, sections, figures, tables, lists, and references to other
DEXLib items.

Business object definition (Information requirement)

The <business_object_definition> element shall describe the business object for which the
template is created.
This element is not generated by the DEXLib Tool since it is optional, but for all TLSS
business templates it shall be included manually by the user and completed as illustrated
below.
The element shall include:
e acopy of the MagicDraw definition of the business object for which the template is
created. See [2].
e A UML composite structure diagram of the business object, showing all attributes
and relationships.
e A table containing all attribute and relationship names and definitions, together with
their relationship to their corresponding TLSS information requirement.
A business_object definition element may contain many types of element allowed in
DEXLib text sections, including paragraphs, sections, figures, tables, lists, and references to
other DEXLib items. For the purpose of TLSS, this element shall contain the elements
described below.

3.4.5.1 Business object definition: introductory paragraph

1.

The <p> element shall describe the business object for which the template is created.

10

[E&GROUP —eurostep-

2. The entry for the introductory paragraph in the “template.xml” file should follow the
example below:

<business_object_definition>

<p>
The definition of the actual_part object is:
This is data about an actual part, which is a physical instance of a
manufacturers item (design).

</p>

</business_object definition>

3.4.5.2 Business object definition: UML diagram reference

1. The < figure> element shall contain a link to the png file containing the UML diagram for
the business object.

2. The entry for the UML diagram reference in the “template.xml” file should follow the
example below:

<business_object_definition>

<figure "1"id="actual part xg">
<title>Actual part</title>

</figure>

</business_object definition>

3.4.5.3 Business object definition: UML diagram

1. The png file containing the UML diagram for the business object shall be placed in the
“dexlib\data\busconcept\TLSS\templates\$template name\images” directory and named in
accordance with the src attribute of the img element above.

2. The UML diagram in the “$template_name.png” file should follow the example below:

11

[EE GROU

P

+RelatingDesign
Manufacturersitem 1
{MadeBy, temReference, ModificationState |
PorsonrgarizationSefect
[1
+DefiningCrganization RelatingDesign
1 0.
DefiningCrganization
0. ActuaiPart
{RelatingDesign, DefiningOrganization, Id}
CrestionDate
0.* +ld : Data classes:string
Datellidarked
0.*
+CreationDate +Datelichdarked
0.1 0.1
DateAndTime

{DateComponert, TimeCormponent

Figure 3 Graphical Representation for Business Object ActualPart®

Individual Batch

—eurostep-

Guiantity +Cuantity
o.*
1

+Scrapped | logical

MalueComponent, UntComponert

MeasureWithUnit

3.4.5.4 Business object definition: attribute details table
1. The detail for each TLSS attribute shall be presented in the form of a table as shown below:

Business Object

Attribute

Definition

Type

Information Requirement

ActualPart

N/A

This is data about an actual part,
which is a physical instance of a
manufacturers item (design).

N/A

Actual part

Id

This is the identifier of the actual part
as assigned by the defining
organization (often a manufacturers
serial number). In some circumstances
/ applications, the actual part owner /
operator / maintainer will allocate
asset identifiers to actual parts for the
purpose of asset tracking and
management and / or job scheduling.
If both manufacturers serial number
and additional asset identifiers are
required to be managed, then alias
identifiers should be used to create the
latter.

string

Actual part.id

DefiningOrganization

This is the reference to the person /
organisation that assigned the id (and
probably manufactured the actual
part).

PersonOrganizationSele
ct

Actual part.defining_organization

RelatingDesign

This is the reference to the
manufacturers item (design) of which
the actual part is a physical instance.

Manufacturersltem

Actual part.relating_design

CreationDate

This is the date and time on which the
actual part was created..

DateAndTime

Actual part.creation_date

DateUidMarked

This is the date and time on which the
UID was associated with or marked
on the actual part.

DateAndTime

N/A7

% Batch is not represented in the actual_part template.

12

[E&GROUP —eurostep-

Individual N/A This is data about an individual N/A Individual
instance of a manufacturers item
that has been produced.

Scrapped This is an indicator that states logical Individual.scrapped
whether the actual part has been
scrapped.

Figure 4 Table of Definitions for the ActualPart Business Object

3.4.6 Information model diagram

1. The <model diagrams> element is where the information model diagram, which is the
means by which the set of PLCS entities and templates that will represent the business
object, is defined.

2. The GraphicalExpress tool and the associated DEX Template tool or similar software shall
be used for drawing these diagrams. Instructions on how to run these tools are detailed in
the help files under the EXPRESS-G > GraphicalEXPRESS Help menu.

3. This is the point in the DEX development process when the need for consistent mapping
from source requirements / business objects to the PLCS data model is absolutely essential.
Mapping guidelines are defined in [5]. The template developer needs to have a thorough
understanding of the semantics of both the business object and the whole of the PLCS data
model, as well as the PLCS templates that have already been developed. They also need a
good understanding of the use of GraphicalExpress and the associated DEX Template.

4. The focal point of the diagram is likely to be a single PLCS template or entity. For example,
when defining the TLSS actual part business template, the corresponding PLCS concept is
product_as realized, and therefore the focal point for the mapping is the
representing_product as realized template.

5. Once the main mapping point has been decided, the mandatory attributes and relationships
of the business object need to be mapped to corresponding PLCS entities and templates that
can be associated with the main entity / template. For example, the TLSS ActualPart maps
to a PLCS Product_as_individual.

6. If no mapping can be defined to the ISO 10303-239 (PLCS) data model, and MoD requires
such a mapping, then use should be made of the ISO TC 184, SC4 Standards Enhancement
and Discrepancy System (SEDS) process outlined in [6].

7. Naming of template occurrences and parameters on model diagrams shall be in accordance
with the source requirement / business object names wherever possible. This is the only
means of recording a mapping from requirement to solution that can be documented for
traceability.

8. All reference parameters provided by underlying OASIS templates should be shown on the
model diagram. Additional EXPRESS Entities that form part of the template and which may
be referenced by other TLSS templates should also be given reference parameter names and
shown on the diagram at this stage®. Reference parameters that are unused by or renamed in
the current business template will be indicated in the model diagram_example below.

9. When mapping questions or issues arise, these shall be discussed with other TLSS template
developers whereby a common understanding and agreement can be reached. Input can also
be sought from other template developers through the plcs-dex@lists.oasis-open.org email
exploder. If agreement can not be reached, then the MOD TLSS Project Manager (or
nominated deputy) shall have the final decision.

" Needs to be added.

¥ The Product _group membership entity in the actual part template is not required as a reference parameter.

13

[E&GROUP —eurostep-

3.4.6.1 Information model diagram: EXPRESSG/Template diagram reference

1. The <model diagram> element shall contain a description and a link to the png file
containing the combined EXPRESS-G and template diagram for the business template.

2. The master attribute of the element shall be set to match the name of the file in
which the figure was originally created (in the example a GraphicalExpress/Visio file) and
this file should be placed in the
“dexlib\data\busconcept\TLSS\templates\8template name\dvlp” directory

3. The entry for the EXPRESS-G and template diagram reference in the “template.xml” file
should follow the example below:

<model diagrams>

<model diagram "EXPRESS-G">
<description>
The graphical representation of actual_part template.
</description>

<figure "actual part tmpl">
<title>The graphical representation of the actual part

template</title>
<img "images/actual_part tmpl.png"
"dvip/actual part tmpl.vsd"/>
</figure>
<model diagrams>
<model diagram "EXPRESS-G">

3.4.6.2 Information model diagram: EXPRESSG/Template diagram

1. The png file containing the combined EXPRESS-G and template diagram for the business
template shall be placed in the
“dexlib\data\busconcept\TLSS\templates\$template _name\images” directory and named in
accordance with the src attribute of the element above.

2. The Information model diagram in the “$template name tmpl.png” file should follow the
example below:

actual_part.ActualPart_id
actual_part ActuslPartDefiningOrganization_id_class_library
actual_part Manufacturersitem_ltemReference

tual_part Manufacturersitem_life_cycle stage

actual_part ActualPartDefiningOrganization_id
actual_part. ActualPartDefiningOrganization_id_class
)ﬁ//—/—\aulual_part Manufacturersilem_MadeBy_class
Hon tual_part Manufacturersiter [ifa_cycle staga class libiary
acmal_parl Maﬂufacmrarsltem MadeBy
/d./ / /mal_pml Manufacturarsitem_MadeBy _class library

lypa_ld_nwngr_ciass_nam “type | |d uwnar ecl i
'Y

a AL, 1 4
Paj Pap Yy, iy Ueﬁ.@“

actual_part ActualPart_whather_scrapped
whether scrlé'

asslgui’ﬁg_reference_data
(class_name, ecl_id)

ltems

G Bl By
[Clggg w Clagg s

Figure 5 Information model diagram for the actual_part Business Template

14

[E&GROUP —eurostep-

3.4.7

NOTE: optional attributes and relationships (such as CreationDate and DateUidMarked)
shall be defined as “Characterizations” (below) and not shown on the model diagram.

Input parameters

Template input parameters are the names of the PLCS attributes that correspond to the
business object attributes; plus zero or more additional attributes that do not appear in the
business object.

Any additional attributes in a list of business template input parameters will be of three
types: (1) attributes corresponding to additional mandatory information in the OASIS
template which the TLSS community decide to populate (such as the
ActualPart_life_cycle_stage input parameter’); (2) attributes which provide additional
semantics to an attribute that does correspond directly to a business object attribute (such as
the ActualPartDefiningOrganization id class parameter which indicates whether a
particular identifier for a company is a simple name, or a CAGE code, or some other type of
identifier); and (3) attributes corresponding to relationships between EXPRESS datatypes
that are created in the new business template (not applicable in this example).

Any input parameters of type (1) or (2) which the TLSS community does not wish to use
explicitly can be set to “/NULL” or to a default value (such as “urn:plcs:rdl:tlss”) in the
instantiation path and can, thereby, be pruned from the explicit list of input parameters.

All TLSS business template input parameters should be given names that correspond to
business concepts with which the TLSS community are familiar and should be named with
full, meaningful names, constructed from the concatenation of business object names,
attribute names, additional terms, and underscores. The use of non-standard abbreviations is
deprecated on the grounds of intelligibility. This may result in long parameter names, but it
will enable direct traceability to the source attributes of each parameter.

This is the point in the DEX development process where the need for TLSS reference data
becomes apparent, since it is usually necessary to add semantics to the generic parameters
by classifying them in terms derived from the business object they represent. For example,
an “identification_assignment” to an “actual part” template is classified as an

“actual_part identifier”. These can be specified as part of the input parameter definition and
hyperlinks will then be generated to those reference data items that have already been
defined.

Any reference data items required by TLSS should be added to the “dexlib\data\refdata\
plcs-rdl-tlss.owl” file using Protégé.

The entry for the input parameters in the “template.xml file” should follow the example
below:

<params_in>

<!-- actual part id -->

<param_in "ActualPart id" "STRING">
<description>
The identifier or serial number of the actual part.
</description>

</param_in>

? Which is used in this example to represent the “scrapped” attribute of ActualPart.

15

[E&GROUP —eurostep-

<!-- actual part defining organization -->

<param_in "ActualPartDefiningOrganization_id" "STRING">
<description>
The name or identifier of the organization that defines the actual part
identifier.
</description>

</param_in>

<param_in "ActualPartDefiningOrganization_id _class" "CLASS"
"Organization_name">
<classifications>
<class "Organization_identification_code"
"urn:plcs:rdl:std"/>
<class "Organization_name" "urn:ples:rdl:std"/>
</classifications>
<description>
The name of the class used to classify the DefiningOrganization
identifier. For example CAGE code, or organization name.
</description>
</param_in>

<param_in "ActualPartDefiningOrganization_id class library"
"URN" "urn:ples:rdl:std">
<description>

The id of the <express_ref
"external class:arm:External class arm.External class lib

rary"/>
storing the definition of the class referenced by the parameter
@ActualPartDefiningOrganization_id_class class.
This parameter should be set to the default.

</description>

</param_in>

<param_in "ActualPart whether scrapped" "CLASS">
<classifications>
<class "Scrapped_actual part"” "urn:plcs:rdl:tlss"/>
<class "Servicable actual part" "urn:plcs:rdl:tlss"/>
</classifications>
<description>

A classification of the actual part that indicates whether or not the
part has been scrapped.
</description>
</param_in>

<!-- manufacturer's item identitifer -->
<param_in "Manufacturersitem ItemReference"” "STRING'">
<description>
The identifier of the design of the actual part.
</description>

16

[E&GROUP —eurostep-

</param_in>

<param_in "Manufacturersitem MadeBy" "STRING">
<description>
The name or identifier of the organization responsible for the
Manufacturer's item.
</description>
</param_in>

<param_in "Manufacturersltem MadeBy class" "CLASS">
<classifications>
<class "Organization_identification_code"
"urn:plcs:rdl:std"/>
<class "Organization_name" "urn:ples:rdl:std"/>
</classifications>
<description>

The name of the class used to classify the
identification of the organization responsible for the Manufacturer's
item. For example CAGE code, or organization name.
</description>
</param_in>

<param_in "Manufacturersltem MadeBy class library" "URN"
"urn:ples:rdl:std">
<description>
The id of the <express_ref
"external class:arm:External class arm.External class lib
rary"/>
storing the definition of the class referenced by the parameter
@Manufacturersitem_MadeBy class.
This parameter should be set to the default.
</description>
</param_in>

<!-- actual part life cycle stage (not included in ActualPart section of TLSS but
should be populated with an appropriate classification) -->

<param_in "Manufacturersltem_life cycle stage” "CLASS">
<classifications>
<!-- a list of all possible classifications that can be used -->
<class "Development stage" "urn:ples:rdl:std"/>
<class "Production_stage" "urn:ples:rdl:std"/>
<class "Retirement stage" "urn:ples:rdl:std"/>
<class "Support stage" "urn:ples:rdl:std"/>
<class "Utilization stage" "urn:ples:rdl:std"/>
</classifications>
<description>

A classification of the life cycle stage of the actual part.

</description>

</param_in>

17

[E&GROUP —eurostep-

3.4.8

349

<param_in "Manufacturersitem_life cycle stage class_library"”
"URN" "urn:ples:rdl:std">
<description>
The identifier of the

<express_ref
"external class:arm.External _class_arm.External class_lib

rary"/>
storing the definition of the class referenced by the parameter
@Manufacturersitem_life cycle_stage.

</description>

</param_in>
</params_in>

These parameters are based on those for the PLCS template used here
(representing_product as realized).

Reference parameters

Template reference parameters are names for EXPRESS datatypes that can be referenced
when the template is referred to in the instantiation path of another template.

All TLSS business template reference parameters shall be named to reflect the business
object elements to which they correspond. Again, the use of abbreviations is discouraged.
Reference parameters inherited from the underlying OASIS template can be pruned at this
stage (if they are not relevant in a TLSS context) or renamed.

The names of the reference parameters used in the PLCS template
(representing_product_as_realized) and the replacement reference parameter names used in
the TLSS actual part template are listed below:

PLCS entity PLCS template PLCS ref TLSS ref param name
param name

Product_as_individual representing_product_as_realized | “pai Mactual_part

Product_as_realized representing_product_as_realized | “par n/a

Product_as_individual_view | representing_product_as_realized | “view n/a

View_definition_context representing_product_as_realized | “cntxt n/a

Part representing_product_as_realized | “design *manufacturers_item

The two of these that are relevant in the TLSS context for actual part are documented in the
“template.xml” file as follows:

<params_ref>
<!-- The reference parameters -->
<param_ref "actual part" "Product_as_individual"/>
<param_ref "manufacturers_item" "Part"/>
</params_ref>

Model diagram example

The <model diagram example> element may be populated once the input parameters and
reference parameters have been defined.

The GraphicalExpress tool and the associated DEX Template tool can automatically
generate the required consolidated template diagram which includes all input parameters and
reference parameters defined for the business template and which can be reused in other
business templates.

18

[E&GROUP —eurostep-

3.4.9.1 Model diagram example: Consolidated template diagram reference

1.

2.

The < model _diagram_example> element shall contain a description and a link to the png
file containing the consolidated template diagram for the business template.

The master attribute of the element shall be set to match the name of the file in
which the figure was originally created (in the example a GraphicalExpress/Visio file) and
this file should be placed in the

“dexlib\data\busconcept\TLSS\templates\$template _name\dvlp” directory.

The entry for the consolidated template diagram reference in the “template.xml” file should
follow the example below:

<model diagrams>

<model _diagram_example "EXPRESS-G">
<description>
The graphical representation of actual_part template.
</description>

<figure "actual part tmpl">
<title>The graphical representation of the actual part
template</title>
<img "images/actual_part tmpl.png"

"dvip/actual part tmpl.vsd"/>
</figure>
</model_diagram_example>
</model_diagrams>

3.4.9.2 Model diagram example: Consolidated template diagram

1.

The png file containing the consolidated template diagram for the business template for the
business template shall be placed in the
“dexlib\data\busconcept\TLSS\templates\$template name\images” directory and named in
accordance with the src attribute of the element above.

The consolidated template diagram in the “$template_name tmpl.png” file should follow
the example below:

actual_part

(ActualPart_id, ActualPartDefiningOrganization_id,
ActualPartDefiningOrganization_id_class,
ActualPartDefiningOrganization_id_class library,
ActualPart_whether_scrapped,
Manufacturersitem_ltemReference,
Manufacturersitem_MadeBy,
Manufacturersiterm_MadeBy class,
Manufacturersitem_MadeBy class library,
Manufacturersitem_life_cycle_stage,
Manufacturersltem_life_cycle_stage_class_library)

A A
aq“ﬁ‘." Py mﬁ‘ﬂu-%cm
" o L’

-

Figure 6 Model diagram example for the actual_part Business Template

19

[E&GROUP —eurostep-

3.4.10 Instantiation path

1.

3.4.11
1.

The instantiation path is the means of formally specifying the set of PLCS EXPRESS
datatypes that must be populated in order to represent the business object for which the
template is created; the data (or range of data) that must be used to populated each datatype;
and the mapping between the input parameters and the underlying EXPRESS datatypes.
Instantiation path syntax is documented in DEXLib > info pages > toc > templates
>Template instantiation path.

The entry for the instantiation_path in the “template.xml” file should follow the example
below:

-- instantiate ActualPart
/representing product _as_realized(id=@ActualPart id,
id_class_name='Actual_part identifier’,
id_ecl_id="urn:plcs:rdl:tlss’,
id_owner=@ActualPartDefiningOrganization_id,
id_owner_class name=@ActualPartDefiningOrganization_id_class,
id_owner_ecl _id=@ActualPartDefiningOrganization_id_class_library,
vn_id="/NULL',
vn_id class_name='Product _as realized identification_code’,
vn_id_ecl id="urn:plcs:rdl:std’,
vn_id _owner="/NULL',
vn_id _owner_class _name='Organization_name’,
vn_id _owner_ecl_id="urn:plcs:rdl:std’,
life_cycle_stage=@Manufacturersitem_life cycle stage,
life_cycle_stage ecl id=@Manufacturersitem_life cycle stage class library,
domain="Through_life support_standard’,
domain_ecl _id='urn:plcs:rdl:tlss’,
type_id=@Manufacturersitem_ItemReference,
type_id_class name='Manufacturers_item_reference’,
type_id_ecl id="urn:plcs:vdl:tlss’,
type_id _owner=@Manufacturersltem MadeBy,
type_id owner class name=@Manufacturerslitem MadeBy class,
type_id owner_ecl_id=@Manufacturersltem MadeBy class library)/

-- assign ref parameters
%"actual part = $representing product as realized.pai%
%" manufacturers_item = Srepresenting product as_realized.par%

-- assign whether _scrapped classification
/assigning reference_data(items="actual part,
class name=@ActualPart whether scrapped,
ecl_id="urn:plcs:rdl:tlss')/

Template example

The <template _example> element is populated with a series of example values for the input
parameters listed earlier in the file. This populated example serves as the basis of the
instantiation diagrams presented below.

The entry for the <template example> in the “template.xml” file should follow the example
below:

20

[E&GROUP —eurostep-

<template_example "actual _part">
<param_in "ActualPart id" "H#1"/>
<param_in "ActualPartDefiningOrganization_id" "ACME Engineering"/>
<param_in "ActualPartDefiningOrganization_id _class"
"Organization_name"/>
<param_in "ActualPartDefiningOrganization_id_class_library"
"urn:ples:rdl:std"/>
<param_in "ActualPart_whether scrapped" "Scrapped_actual part"/>
<param_in "Manufacturersltem_ItemReference" "H#2"/>
<param_in "Manufacturersltem MadeBy" "ACME Design"/>
<param_in "Manufacturersltem MadeBy class" "Organization_name'"/>
<param_in "Manufacturersltem MadeBy class library" "urn:ples:rdl:std"/>
<param_in "Manufacturersitem_life cycle stage"” "Support stage"/>
<param_in "Manufacturersltem_stage class_library" "urn:ples:rdl:std"/>

</template _example>

3.4.12 Unique rules

1. This is a list of input parameters that must be assigned a unique value within the context of
an exchange file.

2. This section is optional within the “template xml” file.

3. Unique rules are determined by the business object specification.

Any entry for the <unique rules>

4. in the “template.xml” file should follow the example below:

<unique_rules>

<unique_rule_param "ActualPart_ur'>

<unique_param "ActualPart id"/>

<unique_param "ActualPartDefiningOrganization_id"/>
<unique_param "Manufacturersitem ItemReference'/>
<unique_entity "actual part"/>

</unique_rule_param>

<unique_rule_param "Manufacturersitem ur'>
<unique_param "Manufacturersltem_ItemReference"/>
<unique_param "Manufacturersltem MadeBy"/>
<unique _param "Manufacturersltem_life cycle stage"/>
<unique_entity "manufacturers_item'"/>

</unique_rule_param>
</unique rules>

3.413 Instance diagrams

1. The <instance diagrams> element may be populated once the template example and the
instantiation path have been defined.

2. The Graphicallnstance tool may be used to generate suitable instance diagrams. Instructions
for the use of this tool can be found under “help”.

3.4.13.1 Instance diagrams: Instance diagram reference

1. The <instance diagram_instantiation> element shall contain a template_example proxy
(which inserts an incarnation of the <template example> described above); a link to the png

21

[E&GROUP —eurostep-

file containing the instance diagram for the business template; and a <exchange_file>
element.

2. The master attribute of the element shall be set to match the name of the file in
which the figure was originally created (in the example a Graphicallnstance file) and this
file should be placed in the “dexlib\data\busconcept\TLSS\templates\$template name\dvlp”
directory

3. The content of the <exchange file> element can be generated automatically using
Graphicallnstance or constructed manually using a text editor and this file should be placed
in the “dexlib\data\busconcept\TLSS\templates\Stemplate name\dvlp” directory with the
name “$template name.p21”. The contents of this file may then be copied to the
<exchange file> element.

4. The entry for the instance diagram instantiation in the “template.xml” file should follow the
example below:

<instance diagrams>

<instance diagram_instantiation "EXPRESS-1">
<template _example proxy "actual part"/>
<figure "actual part _inst">
<title>Entities instantiated by actual part template</title>

</figure>
<exchange file "21">

#287 = EXTERNAL CLASS(3,%,%,8);

#286 = CLASSIFICATION ASSIGNMENT(#287,(#279),/IGNORE");

#284 = EXTERNAL CLASS LIBRARY('default’,$);

#283 = EXTERNAL CLASS(/NULL','default',’/IGNORE" #284);

#282 = EXTERNAL CLASS(3,%,8,8);

#281 = CLASSIFICATION ASSIGNMENT(#282,(#279),/IGNORE");

#279 = VIEW DEFINITION CONTEXT('/IGNORE','/IGNORE',/IGNORE");

#278 = PART VIEW DEFINITION("/IGNORE',/IGNORE'",/IGNORE" #279,(),#255),

#277 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);

#276 = EXTERNAL CLASS('/NULL','Owner_of',/IGNORE" #277);

#275 = EXTERNAL CLASS(3,%,8,8);

#274 = CLASSIFICATION ASSIGNMENT(#275,(#272),'/IGNORE");

#272 =
ORGANIZATION _OR_PERSON IN ORGANIZATION ASSIGNMENT#264,/IGNORE',(#
257));

#15 = CLASSIFICATION _ASSIGNMENT(#16,(#13),/IGNORE");

#13 = IDENTIFICATION _ASSIGNMENT('ACME
Engineering',/IGNORE'",/IGNORE',(#11));

#11 = ORGANIZATION('/IGNORE',/IGNORE");

#9 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:tlss’,$);

#8 = EXTERNAL CLASS(/NULL','Actual _part_identifier',/IGNORE" #9);

#7 = EXTERNAL CLASS($,$,8,3);

#6 = CLASSIFICATION ASSIGNMENT(#7,(#4),/IGNORE");

#4 = IDENTIFICATION ASSIGNMENT('l",’/IGNORE",$,(#2)),

#2 = PRODUCT AS INDIVIDUAL('/IGNORE',/IGNORE'",/IGNORE");

#303 = EXTERNAL CLASS(3,%,8,8);

#302 = CLASSIFICATION ASSIGNMENT(#303,(#300),/IGNORE");

#300 = IDENTIFICATION _ASSIGNMENT('l',/IGNORE",$,(#298)),

22

[E&GROUP —eurostep-

#298 = PRODUCT AS INDIVIDUAL(/IGNORE','/IGNORE','/IGNORE');

#295 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:tlss',$);

#294 = EXTERNAL CLASS(/NULL','Scrapped_actual part',’/IGNORE'"#295);

#293 = EXTERNAL CLASS($,$,5,9),

#292 = CLASSIFICATION ASSIGNMENT(#293,(#171),/IGNORE");

#290 = PRODUCT DESIGN TO _INDIVIDUAL(#230,#171);

#289 = EXTERNAL CLASS LIBRARY('default’,$);

#288 = EXTERNAL CLASS(/NULL','default’,'/IGNORE" #289),

#31 = EXTERNAL CLASS(/NULL','Version_identification_code','/IGNORE'" #32);

#30 = EXTERNAL CLASS($,3,%,%),

#29 = CLASSIFICATION _ASSIGNMENT(#30,(#27),/IGNORE");

#27 = IDENTIFICATION _ASSIGNMENT('"Unknown','/IGNORE", $,(#25)),

#25 = PRODUCT AS REALIZED(/IGNORE''/IGNORE' #2);

#24 = EXTERNAL CLASS LIBRARY('urn:plcs:vdl:std',$),

#23 = EXTERNAL CLASS(/NULL','Owner _of','/IGNORE' #24);

#22 = EXTERNAL CLASS($,$,8,9),

#21 = CLASSIFICATION _ASSIGNMENT(#22,(#19),/IGNORE");

#19 =
ORGANIZATION _OR_PERSON IN ORGANIZATION ASSIGNMENT(#11,"/IGNORE’,(#4)
)’.

#18 = EXTERNAL CLASS LIBRARY('urn:plcs:vdl:std'$),

#17 = EXTERNAL CLASS(/NULL','Organization_name',/IGNORE' #18);

#16 = EXTERNAL CLASS($,$,5,9);

#319 = EXTERNAL CLASS(/NULL','Owner_of',/IGNORE'" #320);

#318 = EXTERNAL CLASS($,$,5,9);

#317 = CLASSIFICATION ASSIGNMENT(#318,(#315),/IGNORE");

#315 =
ORGANIZATION _OR_PERSON IN ORGANIZATION ASSIGNMENT#307,/IGNORE', (#
300));

#314 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);

#313 = EXTERNAL CLASS('/NULL','Organization_name',’/IGNORE' #314);

#312 = EXTERNAL CLASS($,8,5,9),

#311 = CLASSIFICATION ASSIGNMENT(#312,(#309),/IGNORE");

#309 = IDENTIFICATION _ASSIGNMENT('ACME
Engineering',/IGNORE','/IGNORE',(#307)),

#307 = ORGANIZATION('/IGNORE',/IGNORE");

#305 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:tlss',$);

#304 = EXTERNAL CLASS(/NULL','Actual _part identifier',/IGNORE' #305);

#47 = EXTERNAL CLASS LIBRARY('urn:plcs:vdl:std'$),

#46 = EXTERNAL CLASS(/NULL','Owner_of','/IGNORE'" #47);

#45 = EXTERNAL CLASS($,3,%,%);

#44 = CLASSIFICATION _ASSIGNMENT(#45,(#42),/IGNORE");

#42 =
ORGANIZATION _OR_PERSON IN ORGANIZATION ASSIGNMENT(#34,/IGNORE',(#2
7);

#41 = EXTERNAL CLASS LIBRARY('urn:plcs:vdl:std',$),

#40 = EXTERNAL CLASS(/NULL','Organization_name',/IGNORE' #41);

#39 = EXTERNAL CLASS($,3,%,%);

#38 = CLASSIFICATION _ASSIGNMENT(#39,(#36),/IGNORE"),

#36 = IDENTIFICATION ASSIGNMENT('"Unknown',/IGNORE',/IGNORE',(#34));

23

[E&GROUP —eurostep-

#34 = ORGANIZATION(/IGNORE','/IGNORE');
#32 = EXTERNAL CLASS LIBRARY('urn:plcs:vdl:std'’,$);
#335 = EXTERNAL CLASS($,$,8,9),
#334 = CLASSIFICATION ASSIGNMENT(#335,(#332),/IGNORE");
#332 = IDENTIFICATION ASSIGNMENT('/NULL','/IGNORE','/IGNORE',(#330)),
#330 = ORGANIZATION("/IGNORE',/IGNORE");
#328 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#327 =
EXTERNAL CLASS('/NULL','Product _as_realized_identification_code','/IGNORE' #328);
#326 = EXTERNAL CLASS($,$,5,9),
#325 = CLASSIFICATION _ASSIGNMENT(#326,(#323),'/IGNORE");
#323 = IDENTIFICATION _ASSIGNMENT(/NULL','/IGNORE",$,(#321));
#321 = PRODUCT AS REALIZED('/IGNORE',/IGNORE", #298);
#320 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#63 = EXTERNAL CLASS($,3,%,%),
#62 = CLASSIFICATION ASSIGNMENT(#63,(#60), /IGNORE"),
#60 = IDENTIFICATION ASSIGNMENT('ACME
Engineering',/IGNORE'",'/IGNORE',(#58)),
#58 = ORGANIZATION('/IGNORE',/IGNORE");
#56 = EXTERNAL CLASS LIBRARY('urn:plcs:vdl:std'$),
#55 = EXTERNAL CLASS(/NULL''Serial_identification code',/IGNORE'" #56);
#54 = EXTERNAL CLASS($,3,%,%);
#53 = CLASSIFICATION _ASSIGNMENT(#54,(#51),/IGNORE");
#51 = IDENTIFICATION _ASSIGNMENT('1",'/IGNORE",$,(#49)),
#49 = PRODUCT AS _INDIVIDUAL(/IGNORE','/IGNORE','/IGNORE");
#350 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#349 = EXTERNAL CLASS(/NULL','Support_stage',/IGNORE', #350);
#348 = EXTERNAL CLASS(3,%,8,8);
#347 = CLASSIFICATION ASSIGNMENT (#348,(#345), /IGNORE'");
#345 = VIEW DEFINITION CONTEXT('/IGNORE','/IGNORE',/IGNORE");
#344 =
PRODUCT AS INDIVIDUAL VIEW('/IGNORE',/IGNORE'",/IGNORE" #345,(),#321);
#343 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#342 = EXTERNAL CLASS('/NULL','Owner_of',/IGNORE'" #343);
#341 = EXTERNAL CLASS($,8,5,9),
#340 = CLASSIFICATION ASSIGNMENT(#341,(#338),/IGNORE");
#338 =
ORGANIZATION OR_PERSON IN ORGANIZATION _ASSIGNMENT#330,/IGNORE',(#
323));
#337 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#336 = EXTERNAL CLASS(/NULL','Organization_name','/IGNORE' #337);
#79 = EXTERNAL CLASS LIBRARY('urn:plcs:vdl:std'$),
#78 =
EXTERNAL CLASS('/NULL''Product as_individual identification code','/IGNORE'#79);
#77 = EXTERNAL CLASS($,3,%,%),
#76 = CLASSIFICATION _ASSIGNMENT(#77,(#74),/IGNORE"),
#74 = IDENTIFICATION ASSIGNMENT('"Unknown','/IGNORE", $,(#72));
#72 = PRODUCT AS REALIZED(/IGNORE''/IGNORE' #49);
#71 = EXTERNAL CLASS LIBRARY('urn:plcs:vdl:std'$),
#70 = EXTERNAL CLASS(/NULL','Owner of','/IGNORE' #71);

24

[E&GROUP —eurostep-

#0609 = EXTERNAL CLASS($,5,8,%),
#68 = CLASSIFICATION ASSIGNMENT(#69,(#66),/IGNORE'),
#66 =
ORGANIZATION _OR _PERSON IN ORGANIZATION ASSIGNMENT(#58,"/IGNORE',(#5
1);
#65 = EXTERNAL CLASS LIBRARY('urn:plcs:vdl:std'’,$);
#64 = EXTERNAL CLASS('/NULL','Organization_name',/IGNORE', #65),
#366 = ORGANIZATION("/IGNORE',/IGNORE");
#364 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:tlss',$);
#363 =
EXTERNAL CLASS(/NULL','Manufacturers_item_reference'’,/IGNORE' #364),;
#362 = EXTERNAL CLASS($,$,5,9),
#361 = CLASSIFICATION ASSIGNMENT(#362,(#359),/IGNORE");
#359 = IDENTIFICATION _ASSIGNMENT('2','/IGNORE",$,(#357)),
#357 = PART('/IGNORE'",'/IGNORE',/IGNORE");
#355 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:tlss',$);
#354 =
EXTERNAL CLASS(/NULL','Through_life support standard',’/IGNORE' #355);
#353 = EXTERNAL CLASS($,8,5,9),
#352 = CLASSIFICATION ASSIGNMENT(#353,(#345),/IGNORE");
#95 =
PRODUCT AS INDIVIDUAL VIEW(/IGNORE'/IGNORE''YIGNORE'" #96,(),#72);
#94 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#93 = EXTERNAL CLASS(/NULL','Owner_of','/IGNORE' #94);
#92 = EXTERNAL CLASS($,$,%,9);
#91 = CLASSIFICATION _ASSIGNMENT(#92,(#89), /IGNORE");
#89 =
ORGANIZATION _OR_PERSON IN ORGANIZATION ASSIGNMENT#81,/IGNORE', (#7
4);
#88 = EXTERNAL CLASS LIBRARY('urn:plcs:vdl:std',$),
#87 = EXTERNAL CLASS(/NULL','Organization_name','/IGNORE'"#88),
#86 = EXTERNAL CLASS($,8,8,9),
#85 = CLASSIFICATION _ASSIGNMENT(#86,(#83),/IGNORE");
#83 = IDENTIFICATION _ASSIGNMENT('Unknown','/IGNORE','/IGNORE',(#81)),
#81 = ORGANIZATION('/IGNORE',/IGNORE");
#382 = PART VERSION(/IGNORE'/IGNORE' #357);
#381 = PRODUCT CATEGORY(/IGNORE','part','/IGNORE');
#380 = PRODUCT CATEGORY ASSIGNMENT(#381,(#357));
#379 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#378 = EXTERNAL CLASS('/NULL','Owner_of',/IGNORE" #379);
#377 = EXTERNAL CLASS(3,%,8,8);
#376 = CLASSIFICATION ASSIGNMENT(#377,(#374),/IGNORE");
#374 =
ORGANIZATION _OR_PERSON IN ORGANIZATION ASSIGNMENT#366,/IGNORE',(#
359));
#373 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std'$);
#372 = EXTERNAL CLASS(/NULL''Organization name',/IGNORE' #373);
#371 = EXTERNAL CLASS($,$,5,9);
#370 = CLASSIFICATION ASSIGNMENT(#371,(#368),/IGNORE");

25

[E&GROUP —eurostep-

#368 = IDENTIFICATION ASSIGNMENT('ACME
Design',/IGNORE',/IGNORE', (#366)),
#110 = IDENTIFICATION ASSIGNMENT("2",'/IGNORE", $,(#108)),
#108 = PART(/IGNORE'",'/IGNORE',/IGNORE");
#106 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#105 = EXTERNAL CLASS(/NULL','Product life_cycle support',/IGNORE'#106);
#104 = EXTERNAL CLASS($,$,8,9),
#103 = CLASSIFICATION ASSIGNMENT(#104,(#96),/IGNORE'),
#101 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#100 = EXTERNAL CLASS(/NULL','Support_stage',/IGNORE' #101);
#99 = EXTERNAL CLASS($,$,5,9),
#98 = CLASSIFICATION _ASSIGNMENT(#99,(#96), /IGNORE");
#96 = VIEW _DEFINITION CONTEXT(/IGNORE',/IGNORE','/IGNORE");
#399 =
ORGANIZATION OR_PERSON IN ORGANIZATION ASSIGNMENT#391,/IGNORE',(#
384));
#398 = EXTERNAL CLASS LIBRARY('default’,$),
#397 = EXTERNAL CLASS('/NULL','default',’/IGNORE",#398),
#396 = EXTERNAL CLASS($,$,5,9),
#395 = CLASSIFICATION ASSIGNMENT(#396,(#393),/IGNORE");
#393 =
IDENTIFICATION ASSIGNMENT('"Unknown',/IGNORE',/IGNORE',(#391));
#391 = ORGANIZATION("/IGNORE',/IGNORE");
#389 = EXTERNAL CLASS LIBRARY('default’,$);
#388 = EXTERNAL CLASS(/NULL','default’,'/IGNORE" #389),
#387 = EXTERNAL CLASS(3,%,%,8);
#386 = CLASSIFICATION ASSIGNMENT(#387,(#384),/IGNORE");
#384 = IDENTIFICATION ASSIGNMENT('"Unknown','/IGNORE",$,(#382));
#127 = CLASSIFICATION ASSIGNMENT(#128,(#125),/IGNORE");
#125 =
ORGANIZATION OR_PERSON IN ORGANIZATION _ASSIGNMENT#117,/IGNORE',(#
110));
#124 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#123 = EXTERNAL CLASS('/NULL','Organization_name',’/IGNORE' #124);
#122 = EXTERNAL CLASS($,8,5,9),
#121 = CLASSIFICATION ASSIGNMENT(#122,(#119),/IGNORE");
#119 =
IDENTIFICATION _ASSIGNMENT('"Unknown',/IGNORE',/IGNORE'",(#117));
#117 = ORGANIZATION('/IGNORE',/IGNORE");
#115 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:tlss',$);
#114 =
EXTERNAL CLASS('/NULL'/'Manufacturers_item_reference',/IGNORE'"#115),
#113 = EXTERNAL CLASS($,$,5.9),
#112 = CLASSIFICATION ASSIGNMENT(#113,(#110),/IGNORE");
#415 = EXTERNAL CLASS(/NULL','default',’/IGNORE" #416),;
#414 = EXTERNAL CLASS($,$,5,9);
#413 = CLASSIFICATION ASSIGNMENT(#414,(#406),/IGNORE");
#411 = EXTERNAL CLASS LIBRARY('default’,$);
#410 = EXTERNAL CLASS(/NULL','default',’/IGNORE"#411),;
#409 = EXTERNAL CLASS($,$,5,9),

26

[E&GROUP —eurostep-

#408 = CLASSIFICATION _ASSIGNMENT(#409, (#406),/IGNORE");
#4006 = VIEW DEFINITION CONTEXT('/IGNORE','/IGNORE',/IGNORE");
#405 = PART VIEW DEFINITION("/IGNORE',/IGNORE',/IGNORE", #406,(),#382),
#404 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#403 = EXTERNAL CLASS(/NULL','Owner_of',/IGNORE" #404);
#402 = EXTERNAL CLASS(3,%,%,8);
#401 = CLASSIFICATION _ASSIGNMENT(#402,(#399),/IGNORE");
#142 = ORGANIZATION('/IGNORE',/IGNORE");
#140 = EXTERNAL CLASS LIBRARY('default’,$);
#139 = EXTERNAL CLASS('/NULL','default',’/IGNORE"#140),
#138 = EXTERNAL CLASS(3,%,%,8);
#137 = CLASSIFICATION ASSIGNMENT(#138,(#135),/IGNORE");
#135 = IDENTIFICATION _ASSIGNMENT('Unknown',/IGNORE",$,(#133)),
#133 = PART VERSION(/IGNORE'/IGNORE'" #108),
#132 = PRODUCT CATEGORY(/IGNORE','part','/IGNORE");
#131 = PRODUCT CATEGORY ASSIGNMENT(#132,(#108));
#130 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#129 = EXTERNAL CLASS('/NULL','Owner_of',/IGNORE' #130);
#128 = EXTERNAL CLASS(3,%,%,8);
#422 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:tlss',$);
#421 = EXTERNAL CLASS(/NULL','Scrapped_actual_part',/IGNORE'" #422);
#420 = EXTERNAL CLASS($,$,5,9);
#419 = CLASSIFICATION ASSIGNMENT(#420,(#298),/IGNORE'");
#417 = PRODUCT DESIGN TO INDIVIDUAL(#357,#298);
#416 = EXTERNAL CLASS LIBRARY('default’,$);
#159 = CLASSIFICATION ASSIGNMENT(#160,(#157),/IGNORE");
#157 = VIEW DEFINITION CONTEXT('/IGNORE','/IGNORE',/IGNORE");
#156 = PART VIEW DEFINITION("/IGNORE',/IGNORE',/IGNORE" #157,(),#133),
#155 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#154 = EXTERNAL CLASS('/NULL','Owner_of',/IGNORE' #155);
#153 = EXTERNAL CLASS(3,%,%,8);
#152 = CLASSIFICATION ASSIGNMENT(#153,(#150),/IGNORE");
#150 =
ORGANIZATION OR_PERSON IN ORGANIZATION ASSIGNMENT#142,'/IGNORE',(#
135));
#149 = EXTERNAL CLASS LIBRARY('default’,$);
#148 = EXTERNAL CLASS('/NULL','default',’/IGNORE",#149);
#147 = EXTERNAL CLASS(3,%,%,8);
#146 = CLASSIFICATION ASSIGNMENT(#147,(#144),/IGNORE");
#144 =
IDENTIFICATION ASSIGNMENT('"Unknown',/IGNORE',/IGNORE’,(#142));
#175 = CLASSIFICATION ASSIGNMENT(#176,(#173),/IGNORE");
#173 = IDENTIFICATION _ASSIGNMENT('l',/IGNORE",$,(#171)),
#171 = PRODUCT AS INDIVIDUAL(/IGNORE','/IGNORE',/IGNORE");
#168 = PRODUCT DESIGN _TO _INDIVIDUAL(#108,#49),
#167 = EXTERNAL CLASS LIBRARY('default’,$);
#166 = EXTERNAL CLASS('/NULL','default',’/IGNORE"#167),;
#165 = EXTERNAL CLASS(3,%,%,8);
#164 = CLASSIFICATION ASSIGNMENT(#165,(#157),/IGNORE");
#162 = EXTERNAL CLASS LIBRARY('default’,$),

27

[E&GROUP —eurostep-

#161 = EXTERNAL CLASS(/NULL','default’,'/IGNORE" #162),
#160 = EXTERNAL CLASS($,$,5,9),
#191 = EXTERNAL CLASS($,$,5,9),
#190 = CLASSIFICATION ASSIGNMENT#191,(#188),/IGNORE");
#188 =
ORGANIZATION _OR _PERSON IN ORGANIZATION ASSIGNMENT#180,"/IGNORE’, (#
173));
#187 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#186 = EXTERNAL CLASS(/NULL','Organization_name','/IGNORE'" #187);
#185 = EXTERNAL CLASS($,8,5,9),
#184 = CLASSIFICATION ASSIGNMENT(#185,(#182),'/IGNORE");
#182 = IDENTIFICATION _ASSIGNMENT('ACME
Engineering',/IGNORE',/IGNORE',(#180)),
#180 = ORGANIZATION('/IGNORE',/IGNORE");
#178 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:tlss',$);
#177 = EXTERNAL CLASS(/NULL','Actual _part identifier','/IGNORE'" #178);
#176 = EXTERNAL CLASS($,$,5,9),
#207 = CLASSIFICATION _ASSIGNMENT(#208,(#205),/IGNORE");
#205 = IDENTIFICATION ASSIGNMENT(/NULL','/IGNORE','/IGNORE',(#203));
#203 = ORGANIZATION("/IGNORE',/IGNORE");
#201 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#200 =
EXTERNAL CLASS('/NULL','Product _as_realized_identification_code','/IGNORE'" #201);
#199 = EXTERNAL CLASS($,$,5,9);
#198 = CLASSIFICATION ASSIGNMENT(#199,(#196),/IGNORE");
#196 = IDENTIFICATION _ASSIGNMENT(/NULL',/IGNORE",$,(#194));
#194 = PRODUCT AS REALIZED('/IGNORE',/IGNORE" #171);
#193 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#192 = EXTERNAL CLASS(/NULL','Owner_of',/IGNORE" #193);
#223 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#222 = EXTERNAL CLASS(/NULL','Support_stage',/IGNORE' #223);
#221 = EXTERNAL CLASS($,8,5,9),
#220 = CLASSIFICATION _ASSIGNMENT(#221,(#218),/IGNORE");
#218 = VIEW DEFINITION CONTEXT('/IGNORE','/IGNORE',/IGNORE");
#217 =
PRODUCT AS INDIVIDUAL VIEW('/IGNORE',/IGNORE'",/IGNORE" #218,(),#194);
#216 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#215 = EXTERNAL CLASS('/NULL','Owner_of',/IGNORE" #216);
#214 = EXTERNAL CLASS($,8,5,9),
#213 = CLASSIFICATION ASSIGNMENT(#214,(#211),/IGNORE");
#211 =
ORGANIZATION _OR_PERSON IN ORGANIZATION ASSIGNMENT#203,/IGNORE', (#
196));
#210 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#209 = EXTERNAL CLASS(/NULL','Organization_name',/IGNORE' #210),
#208 = EXTERNAL CLASS($,$,5,9);
#239 = ORGANIZATION("/IGNORE',/IGNORE");
#237 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:tlss',$),
#236 =
EXTERNAL CLASS(/NULL','Manufacturers_item_reference’,/IGNORE' #237);

28

[E&GROUP —eurostep-

#235 = EXTERNAL CLASS($,$,8,9),
#234 = CLASSIFICATION ASSIGNMENT(#235,(#232),/IGNORE");
#232 = IDENTIFICATION ASSIGNMENT("2'",/IGNORE", $,(#230)),
#230 = PART(/IGNORE'",'/IGNORE','/IGNORE");
#228 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:tlss',$);
#227 =
EXTERNAL CLASS('/NULL','Through_life support_standard','/IGNORE' #228);
#226 = EXTERNAL CLASS($,$,8,9),
#225 = CLASSIFICATION ASSIGNMENT(#226,(#218),/IGNORE");
#255 = PART VERSION(/IGNORE'/IGNORE' #230),
#254 = PRODUCT CATEGORY(/IGNORE','part','/IGNORE');
#253 = PRODUCT CATEGORY ASSIGNMENT(#254,(#230));
#252 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#251 = EXTERNAL CLASS('/NULL','Owner_of',/IGNORE" #252);
#250 = EXTERNAL CLASS(3,%,8,8);
#249 = CLASSIFICATION ASSIGNMENT(#250,(#247),/IGNORE");
#247 =
ORGANIZATION OR_PERSON IN ORGANIZATION ASSIGNMENT#239,/IGNORE',(#
232));
#246 = EXTERNAL CLASS LIBRARY('urn:plcs:rdl:std',$);
#245 = EXTERNAL CLASS(/NULL','Organization_name','/IGNORE' #246);
#244 = EXTERNAL CLASS($,$,5,9);
#243 = CLASSIFICATION ASSIGNMENT (#244,(#241),/IGNORE");
#241 = IDENTIFICATION _ASSIGNMENT('ACME
Design',/IGNORE',/IGNORE', (#239)),
#271 = EXTERNAL CLASS LIBRARY('default’,$);
#270 = EXTERNAL CLASS(/NULL','default',’/IGNORE"#271),
#269 = EXTERNAL CLASS($,$,5,9);
#268 = CLASSIFICATION ASSIGNMENT(#269,(#266),/IGNORE");
#266 =
IDENTIFICATION _ASSIGNMENT('"Unknown',/IGNORE',/IGNORE',(#264));
#264 = ORGANIZATION('/IGNORE',/IGNORE");
#262 = EXTERNAL CLASS LIBRARY('default’,$),
#261 = EXTERNAL CLASS('/NULL','default',’/IGNORE"#262);
#260 = EXTERNAL CLASS(3,%,8,8);
#259 = CLASSIFICATION _ASSIGNMENT(#260,(#257),/IGNORE");
#257 = IDENTIFICATION _ASSIGNMENT('Unknown',/IGNORE",$,(#255));
</exchange_file>
</instance_diagram_instantiation>
</instance_diagrams>

3.4.13.2 Instance diagrams: Instance diagram

1. The png file containing the instance diagram for the business template shall be placed in the
“dexlib\data\busconcept\TLSS\templates\$template name\images” directory and named in
accordance with the src attribute of the element above.

2. The instance diagram in the “$template name inst.png” file should follow the example
below:

29

GROUP

@48 representing_product_as_realized

id: 1

id_clasz_name: 'Senal_identification_code'
id_ecl_id: "urrcplos:rdlstd'

id_owner: ‘ACME Engineering'
id_owner_class_name: 'Organization_name'
id_owner_ecl_id: "urreplosrdlstd’

wi_id: Unknown'

vi_id_clasz_name: Product_as_individual_identification_code'
wi_id_ecl_id: ‘urr:plos:rdlstd'

v id_owner: Unknown'
wir_id_owner_class_name: 'Organization_name'
v id_owner_ecl_id: 'urnplos rdl gtd'
life_cycle_stage: "Support_stage'
life_cycle_stage_ecl_id: 'urnplos: rdlstd'

domair: 'Product_lfe_cecle_support’
domain_ecl_id: ‘urn;plos:rdl std’

type_id: "2

twpe_id_class_name: 'Manufacturers_itern_reference’
twpe_id_ecl_id: ‘urr;plozrdltles’

twpe_id_owner: Unknown’
twpe_id_owner_clazs_name: 'Organization_name'
twpe_id_owner_ecl_id: 'um:plos:rdl:std’

item‘s [0]

@291 azsigning_reference_data

clazz_name: 'Scrapped_actual_part’
eclid: 'urr:plosrdltes'

Figure 7 Instance diagram example for the actual_part Business Template

—eurostep-

This template instance diagram is the content of the instance diagram_instantiation element and is
named actual part inst.png. It represents a populated example of the entities and templates that
compose the business template.

3.4.13.3
1.

Instance diagrams: Instance example diagram reference

The <instance_diagram_example> element shall contain a template_example proxy (which
inserts an incarnation of the <template example> described above) and a link to the png file

containing the instance example diagram for the business template.

The master attribute of the element shall be set to match the name of the file in
which the figure was originally created (in the example a Graphicallnstance file) and this
file should be placed in the “dexlib\data\busconcept\TLSS\templates\$template name\dvlp”

directory

The entry for the instance example diagram instantiation in the “template.xml” file should

follow the example below:

30

[E&GROUP —eurostep-

<instance_diagrams>
<instance_diagram_example "EXPRESS-1">
<template _example proxy "actual part"/>
<figure "actual part _inst_tmpl">
<title>Instantiation of actual part template</title>
<img "images/actual_part_inst_tmpl.png"
"dvip/actual part _inst_tmpl.giz"/>
</figure>
</instance_diagram_example>
</instance_diagrams>

3.4.13.4 Instance diagrams: Instance diagram

3. The png file containing the instance diagram for the business template shall be placed in the
“dexlib\data\busconcept\TLSS\templates\$template name\images” directory and named in
accordance with the src attribute of the element above.

4. The instance diagram in the “$template name inst.png” file should follow the example
below:

-~
@169 actual_part

ActualPart_id: 7'

ActualPartDefiningOrganization_id: "ACME Engineering'
ActualPartDefiningCrganization_id_class: 'Organization_name'
ActualPartDefiningOrganization_id_class_library: 'urn:ples: rdl std'
ActualPart_life_cecle_stage: "Support_stage’
ActualPart_life_cycle_stage_class_libran: 'urn:plos:rdl: std'

b anufacturersltenn_ltemB eference; '2'

b anufacturersltern_tadeBy: 'BCME Design'

b anufacturersltern_MadeBy_class: 'Organization_name'

M anufacturersitern_MadeBy_clazz_library: ‘urnplos:rdl:std’

Figure 8 Instance diagram example for the actual_part Business Template

This template instance diagram is the content of the instance diagram_example element and is

named actual part inst tmpl.png. It represents a populated example of the template drawn as a
single box.

3.414 Characterizations

1. All optional attributes and relationships of a TLSS business object shall be defined as
Characterizations of the corresponding business template. They should not be included on
the template model diagram.

2. The entry for the characterizations element in the “template.xml” file should follow the
example below:

31

GROUP —eurostep-
<characterizations>
<characterization name="Creation date" optional="yes">
<p>
The date when the actual part was created can be represented by assigning a
date (using the relationship
<express_ref
linkend="date_time_assignment:arm:Date_time assignment_arm.Date_or_d
ate_time_assignment'"/>)
to
<express_ref
linkend="product_as_individual:arm:Product as_individual arm.Product a
s_individual"/>
using the
<template_refiname="assigning calendar date"
capability="assigning date time"/>
template with the
<express_ref linkend="date_time:arm:Date time _arm.Date time"/>
classified as a type of
<rdl refid="Date actual creation" urn="urn:plcs:rdl:std"/>.
</p>
<note>
The assignment of dates is described the capability
<capability ref linkend="assigning date time"/>.
</note>
</characterization>
<characterization name="Date UID marked" optional="yes">
<p>
The date when the UID was marked on the actual part can be represented by
assigning a date (using the relationship
<express_ref
linkend="date_time_assignment:arm:Date_time assignment_arm.Date_or d
ate_time_assignment'"/>)
to the <express_ref
linkend="identification_assignment:arm:ldentification_assignment arm.lden
tification_assignment"/>
that references
<express_ref
linkend="product_as_individual:arm:Product as_individual arm.Product a
s_individual"/>
using
<template ref name="assigning calendar date"
capability="assigning date time"/>
template with the
<express_ref linkend="date time:arm:Date time arm.Date time"/>
classified as a type of
<rdl refid="Date actual creation" urn="urn:plcs:rdl:std"/>.
</p>
<note>

The assignment of dates is described the capability
<capability ref linkend="assigning date_time'"/>.

32

[E&GROUP —eurostep-

</note>
</characterization>
</characterizations>

4 TESTING THE TEMPLATE DOCUMENTATION

4.1 Test the DEX files on the local machine

1. Once the “template.xml” file is complete and all associated diagrams and contacts have been
completed, the files need to be tested, first on the local machine of the developer.

2. Each “template.xml” file shall be checked for is wellformedness.'’

Each “template.xml” file shall be checked for validity against the relevant DTD."

4. Each “template.xml” file shall be checked for DEXLib error messages when opened with
Internet Explorer on the developer’s local machine. To do this, right click on the
“home.xml” file in the “dexlib\data\busconcept\TLSS\templates\actual part” folder and
select “Open with -> Internet Explorer” from the drop down lists. Figure 9 shows the screen

W

that should appear.
1nn erlargeaka bbb’ Fald bew nevepli F] A epideoni laa
fj = i v s e sy TS e i et 1 et ErrOE Ay =) dp & o
Cinghe - La = Goedl o Bockwrkes TR0 o TF (et w ~ b Sl pze A Emrpa
¢ W | i T 5 - T
TEI'I'IPEI&':— -EtI.IILP-'t I‘.-:t_Pt] sk BT INELY 1230
Context:— TLSS ' bl A

Cew' Coswsty Cwiopiews - Bapeayscss - Daosls Shdsdey imoipess) Cwpmessy. Gesassrger S by (basssssrs ssar sum

Template: — acfisad part
Editoer; Sreg Harrm
Mt radbenan: Mike Weed
Basireass rawigwar Andy Burdan
Skaiur 7 in_wmark
Mt P b SLadL
Feprd et Mk Wand Rncaw not starbad
Bumiresar revessw ghatuns
Rl wreai: Brdy Burden Aevss nod lartsd
L4174
haue sguimt temolabe: actunl_pert
Oiplers. | s O
Choaed ssuas: D

DU MO0 JOOT — AL nphbs reprved

s
4 BTar o NN 2= B e smomr I 1 aneashage B oammani. r

Figure 9 Screen shot of the DEXLib view of a TLSS Business Template

'% Note that the use of an xml editor during development will highlight errors of this kind.

" Note that the use of an xml editor during development will highlight errors of this kind.

33

[E&GROUP —eurostep-

5. The developer should then select every element of the Template on the top menu bar and
visually inspect the content that is displayed. There should be no errors — in red text —
anywhere in the displayed text. If there are, they shall be investigated and rectified."?

4.2 Upload the DEX files to Sourceforge

1. Once the “template.xml” and associated files have been tested on the local machine, they all
need to be uploaded to Sourceforge using wincvs, See DEXlib help file
http://www.plcs-resources.org/plcs/dexlib/help/dex/dvlp_intro.htm

2. Note that you must perform the process in the following order:

a. Run wincvs.

b. Add the folder containing all the Business Template files.

c. Add each of its subfolders (\dvlp, \images, \sys).

d. Add each file within each folder and subfolder and then Commit it.

3. When complete, all folders should have a tick in their icon to indicate that they have been
added to cvs, and no files should have question marks left in their icon:

s+ 0 el o s sl L e s LR Lt s B sad e i1

WP Wem W SeEEle HOlfp CHAR Trmle AR ke HER
O B L T - T Sy KW AT 0 IR A S
1 LRI ERDa® L0 5wl
HE | rm H 1 o B |5 T e | Mo
] T = LS | Al i u| 1
Y e | =

s i AT dyE
I

T o & ik L T T LR
1 i bt [Li Tst o 3 D L

Il iy PR W
ST - | #3H hermssirn Lt Tt o s

+ Bl EgrEng iR TR L

« W mngring oW e

]

+ [l m

& &l e _pars

& i1 DA O

[l o beeod sy

- M mpERTe] el e

5] BT e

& [l BB S S
« mi MPEETISY EErTETY

&] e S s AT

+ ml EprEEny stwck raasace
4 [mprewrrtey niwrston corie
& [l EERE) T R LI

+ [BI e b

& i MEreEE) gEma _wgrcEe
§ i e e el T e
+ fl B N

¥l [it vl DO B DI OL e o i b oo i e SRS E

g
o [st =l N-RT | > B im0 e | <R

Figure 10 Screen shot of wincvs showing the file structure and icons on completion of uploading of Business
Template files to Sourceforge

'2 Note that a Checklist for reviewing PLCS Templates has been developed and this may in the future be modified for
use with TLSS Business Templates.

The current document is “dexlib\docs\Checklists\ Template _Review_Checklist.doc”

34

[E& GROUP —eurostep-

4.3 Test the DEX files on the “plcs_resources” web site

I.

A process has been put in place that builds an HTML version of DEXLib overnight and
makes this available on a public web site for read only access. This web site is
http://www.plcs-resources.org/.
Hence the files uploaded by developers are processed during the early hours of the morning
following their upload to Sourceforge. This processing can uncover errors in the source files
that are not obvious upon visual inspection in Internet Explorer on the developer’s local
machine.
Consequently, all TLSS DEX developers shall perform a second check of their DEX by
repeating the inspection described in section 4.1.
To obtain access to the HTML version of the DEX go to http://www.plcs-resources.org/

a. Select the “DEXs” tab (second from left at the top of the screen).

‘5 = L e pryreenm oy e bips =) g & e
e iZn = Gokol g B Bockrwres [1M b | O [Berh 0y e 0 g Sarel i A Srtrma
= @ Adesh O Rppel s L) - b roe s TR
| Eusoten = =

Product Life Cycle Support I

TEIT | EEs-2 7 AV S e] | e Lt LEs

. Product Life Cycle Support (PLCS)

bwas
=1 RO 1N

| -;_.5,!- -_|:I

EL . DS LS |. f1n u,._. i tias

SR

Sponsored by:
| =eurosfep- 'mreduction

This weimtie prodiris sccuss (o B Peodlipt Lie Oyl Suppoet |PLCS) slascess) (0 10301-270] srd selabas acheoioglas

Ta shide by S0 Comright nies, sene s of B5y sbe s pasrscrd protscted aer osly ave lable b membane of Bse PLES DRSS
Tesheizal Sebomanittes. Them Enks mon morked B . Acraas deisils am sealbbie fmom the PLES DRSS Technicsl Sutcommitiss
ssetany PBLCR DESIH Terbnirsl Sidwrorm e

Oversiaw

Progit Uite Cycie Sapport [FLCR] & an (50 BTER standam (150 10055-359) that sephives the oegbion snd mansgemeet Boosgh ©ime of
En Aesced perd of Proouch ared upport Infrmubon (JAFS]} which cen ba used bo epadiy mnal poniecd cmuires supoort aciheities
Decaugtogl o comgrias podect’s i,

[100 -0 o el SppEcEDo-Spaa i bl Mombie, mfaomaion el 58 st of v 130 STEP catbes of siandasts. The
il then el can e Pl red Dy indesiry and oegen atione tipogh Bhe use of Refsssne Dain Uitk [ROLE The rde of RO iy
I compieis the ssmaniks of the FLES model socessry Sor depdocymment io st

The esfit of 150 10305130 (PLCS] i ils intsgpated wiew. Howsyver Beis memns that 11 has @ larpgs ard geesdic inflermabon modal Bk
e Mg iSO R L Dl vl POeDeadid viafwles of ekl LT BposcEiions S35 nidn B

Figure 11 Screen shot of the plcs-resources web site front page

b. Select the “development release of DEXLib” link on the right hand side of the
screen.

35

[E& GROUP —eurostep-

i e - e = e K e

e = G @ Bcwies B b D ek ¢y Al s L Saradize AErtmaa
& W | ik R o L -

[Eueogen = gt .

Product Life Cycle Support .

B B L Wl vt W s M R B

n
wlpkinnicalain
Eedaled s

Sporsored by Intreduction

r DEflD = tem T e i e PLES DEY [Oais Exchangs Saie). I corfsice up io dabs semicns of sl B2
""Eh'ms EP' PLCS e o Chalr (Lfel Bendil codi itz

Ordine sl

£ basmines imaar o DEMIE Im awreprenl meass o DEKIE
Download Steprracd
The siops s =l o a bcal copy = DENHE.
Desrians ST fa sl a

A T —_—— e — T 3

Figure 12 Screen shot of the plcs-resources web site DEXs page

c. Click the link that is then displayed — this will indicate the date and time of the
HTML build, which should always be today’s date (if it isn’t, something has
prevented the HTML build from completing — contact the Eurostep Limited Office to
report the problem (+44 (0) 1745 582008)).

36

[E&GROUP —eurostep-

T Deewhnpawe ielnaie o Beadl - B iwkons Dibe rel B gdeie

4 L e e L il -
e 2a = Goeol B Bockrwrbes [1M bicd | T [erk oy el o g Saredioe A S
¢ W Bevenprnee s of Dt ". : L A rown s
Dexlib
Tha Sallcasien files are svmdshle ozlme for sasin menbens
Thee chovwsr b pelpass of decchl i pubipabed dapy 1002 BG0ET 070
Dy i e T

Bismmms = @ CGmsis Bamami v [~ e i AL PR urm

Figure 13 Screen shot of the plcs-resources web site DEX Development Release link page

d. Navigating to the Business Template that has been created (“Business DEXs” button
on the top of the DEXLib toolbar, followed by the “TLSS” menu item on the left,
then the “Templates” menu item and then the menu item for the named Business
Template).

e. Now repeat the visual check of the Template selecting every element of the
Template on the top menu bar and visually inspect the content that is displayed.
There should be no errors — in red text — anywhere in the displayed text. If there are,
they shall be investigated and rectified.

5 APPROVAL OF TLSS BUSINESS TEMPLATES

1. Each TLSS Template shall be reviewed by those named in section 3.4.2.

2. Issues arising from the review process shall be raised by the reviewer by editing the
“dexlib\data\busconcept\TLSS\templates\actual part\dvlp\issues.xml” file and uploading
this to Sourceforge.

3. Review of TLSS Templates is a three stage process.

a. The first review stage — the business review — is done when the
<business_perspective> and <business_object definition> elements have been
completed. When complete and accepted, the status element should be updated as
follows:

<status ="in_work" ="2008-01-28">

37

[E&GROUP —eurostep-

<review
"business”
"andy.burden"
"end business_review"
"2007-11-31"
/>
</status>

b. The second review stage — the model review — is done when all parameters, paths,
instance diagrams, examples and associated reference data have been fully defined.
When complete and accepted, the status element should be updated as follows:

<status "in_work" "2008-01-28">
<review "model"
"business"
"andy.burden"
"end business review"
"2007-11-31"
/>
<review "model"
"timturner"”
"end_model review"
"2007-12-15"
/>
</status>

c. The third stage — completion — is done when the DEX has been completed and all
issues have been resolved. When complete and accepted, the status (state) element
should be updated to “complete” as follows:

<status "complete" 2008-01-28">
<review "business"
"andy.burden"
"end business review"
"2007-11-31"
/>
<review "model"
"timturner"”
"end_model review"
"2007-12-15"
/>
</status>

4. When a DEX reaches “completed” status it shall be released using the DEXLib Tool.

6 MAINTENANCE OF TLSS BUSINESS TEMPLATES

1. Once a Template has been released, all elements of it come under configuration control.
This means that changes need to be proposed and approved before being implemented.

38

[E&GROUP —eurostep-

7 REFERENCES

[1] TLSS Data Exchange Specification Development Methodology.

[2] Guidance on writing TLSS business objects.

[3] TLSS Reference Data Development Methodology.

[4] Guidance on creating TLSS Reference Data.

[5] AP239 Mapping Guidelines.

[6] ISO/TC 184/SC4 Organization Handbook; Clause 3.3 Standard Enhancement and Discrepancy
System (SEDS).

39

